

    
      
          
            
  
Welcome to Pytest Alembic’s documentation!


Contents:


	Quickstart
	Introduction

	The pitch

	Installing





	Setup
	env.py

	Setting up Fixtures

	Git(hub) Settings





	Running Tests
	Configuration

	Alternative to --test-alembic

	Multiple Alembic Histories

	Pytest Marks





	Custom Data Hooks
	Schema

	Example





	Custom Tests

	Experimental Tests
	test_all_models_register_on_metadata

	test_downgrade_leaves_no_trace





	Asyncio
	A slightly more versatile setup





	API
	Fixtures

	Alembic Runner





	Contributing
	Prerequisites

	Getting Setup

	Need help











Indices and tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  

    
      
          
            
  
Quickstart

[image: Github Actions Build]
 [https://github.com/schireson/pytest-alembic/actions/workflows/build.yml/badge.svg][image: codecov]
 [https://codecov.io/gh/schireson/pytest-alembic][image: Documentation Status]
 [https://pytest-alembic.readthedocs.io/en/latest/?badge=latest]See the full documentation here [https://pytest-alembic.readthedocs.io/en/latest/].


Introduction

A pytest plugin to test alembic migrations (with default tests) and
which enables you to write tests specific to your migrations.

$ pip install pytest-alembic
$ pytest --test-alembic

...
::pytest_alembic/tests/model_definitions_match_ddl <- . PASSED           [ 25%]
::pytest_alembic/tests/single_head_revision <- . PASSED                  [ 50%]
::pytest_alembic/tests/up_down_consistency <- . PASSED                   [ 75%]
::pytest_alembic/tests/upgrade <- . PASSED                               [100%]

============================== 4 passed in 2.32s ===============================







The pitch

Have you ever merged a change to your models and you forgot to generate
a migration?

Have you ever written a migration only to realize that it fails when
there’s data in the table?

Have you ever written a perfect migration only to merge it and later
find out that someone else merged also merged a migration and your CD is
now broken!?

pytest-alembic is meant to (with a little help) solve all these
problems and more. Note, due to a few different factors, there may
be some minimal required
setup [http://pytest-alembic.readthedocs.io/en/latest/setup.html];
however most of it is boilerplate akin to the setup required for alembic
itself.


Built-in Tests


	test_single_head_revision

Assert that there only exists one head revision.

We’re not sure what realistic scenario involves a diverging history to
be desirable. We have only seen it be the result of uncaught merge
conflicts resulting in a diverged history, which lazily breaks during
deployment.



	test_upgrade

Assert that the revision history can be run through from base to head.



	test_model_definitions_match_ddl

Assert that the state of the migrations matches the state of the
models describing the DDL.

In general, the set of migrations in the history should coalesce into
DDL which is described by the current set of models. Therefore, a call
to revision --autogenerate should always generate an empty migration
(e.g. find no difference between your database (i.e. migrations
history) and your models).



	test_up_down_consistency

Assert that all downgrades succeed.

While downgrading may not be lossless operation data-wise, there’s a
theory of database migrations that says that the revisions in
existence for a database should be able to go from an entirely blank
schema to the finished product, and back again.



	Experimental
tests [http://pytest-alembic.readthedocs.io/en/latest/experimental_tests.html]


	all_models_register_on_metadata

Assert that all defined models are imported statically.

Prevents scenarios in which the minimal import of your models in your env.py
does not import all extant models, leading alembic to not autogenerate all
your models, or (worse!) suggest the deletion of tables which should still exist.



	downgrade_leaves_no_trace

Assert that there is no difference between the state of the database pre/post downgrade.

In essence this is a much more strict version of test_up_down_consistency,
where the state of a MetaData before and after a downgrade are identical as
far as alembic (autogenerate) is concerned.





These tests will need to be enabled manually because their semantics or API are
not yet guaranteed to stay the same. See the linked docs for more details!





Let us know if you have any ideas for more built-in tests which would be
generally useful for most alembic histories!



Custom Tests

For more information, see the docs for custom
tests [http://pytest-alembic.readthedocs.io/en/latest/custom_tests.html]
(example below) or custom static
data [http://pytest-alembic.readthedocs.io/en/latest/custom_data.html]
(to be inserted automatically before a given revision).

Sometimes when writing a particularly gnarly data migration, it helps to
be able to practice a little timely TDD, since there’s always the
potential you’ll trash your actual production data.

With pytest-alembic, you can write tests directly, in the same way
that you would normally, through the use of the alembic_runner
fixture.

def test_gnarly_migration_xyz123(alembic_engine, alembic_runner):
    # Migrate up to, but not including this new migration
    alembic_runner.migrate_up_before('xyz123')

    # Perform some very specific data setup, because this migration is sooooo complex.
    # ...
    alembic_engine.execute(table.insert(id=1, name='foo'))

    alembic_runner.migrate_up_one()





alembic_runner has a number of methods designed to make it convenient
to change the state of your database up, down, and all around.




Installing

pip install "pytest-alembic"









            

          

      

      

    

  

    
      
          
            
  
Setup


env.py

The default env.py file that alembic will autogenerate for you includes a snippet like so:

def run_migrations_online():
    connectable = engine_from_config(
        config.get_section(config.config_ini_section),
        prefix="sqlalchemy.",
        poolclass=pool.NullPool,
    )





This is fine, but pytest-alembic needs to provide alembic with a connection at runtime.
So to allow us to produce that connection in a way that env.py understands, modify the
above snippet to resemble:

def run_migrations_online():
    connectable = context.config.attributes.get("connection", None)

    if connectable is None:
        connectable = engine_from_config(
            context.config.get_section(context.config.config_ini_section),
            prefix="sqlalchemy.",
            poolclass=pool.NullPool,
        )






Caplog Issues

The default env.py file that alembic will autogenerate for you also includes a call to
logging.config.fileConfig() [https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig]. Given that alembic tests invoke the env.py, and
logging.config.fileConfig() [https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig] has a default argument of disable_existing_loggers=True,
this can inadvertently break tests which use pytest’s caplog fixture.

To fix this, simply provide disable_existing_loggers=False to fileConfig.


Warning

Additionally, if you are a user of logging.basicConfig() [https://docs.python.org/3/library/logging.html#logging.basicConfig], note that logging.basicConfig() [https://docs.python.org/3/library/logging.html#logging.basicConfig]
“does nothing if the root logger already has handlers configured”, (which is why we generally
try to avoid basicConfig) and may cause issues for similar reasons.




Note

Python 3.8 added a force=True keyword to logging.basicConfig() [https://docs.python.org/3/library/logging.html#logging.basicConfig], which makes
it somewhat less hazardous to use.





Optional but helpful additions

Alembic comes with a number of other options to customize how the autogeneration of revisions
is handled, but most of them are disabled by default. There are many good reasons your particular
migrations might not want some of these options enabled; but if they don’t apply to your
setup, we think they increase the quality of the safety this library helps to provide.

Further down in your env.py, you’ll see a configure block.

with connectable.connect() as connection:
    context.configure(
        connection=connection,
        target_metadata=target_metadata,
        # This is where we want to add more options!
    )

    with context.begin_transaction():
        context.run_migrations()





Consider enabling the following options:


	compare_type=True: Indicates type comparison behavior during an autogenerate operation.


	compare_server_default=True: Indicates server default comparison behavior during an autogenerate operation.


	include_schemas=True: If True, autogenerate will scan across all schemas located by the SQLAlchemy get_schema_names() method, and include all differences in tables found across all those schemas. This may only be useful if you make use of schemas.







Setting up Fixtures

We expose 2 explicitly overridable fixtures alembic_config and alembic_engine.

One should generally put the implementations of alembic_config and alembic_engine
in a conftest.py (a special file recognized by pytest) at the root of your tests folder,
typically tests/conftest.py.

If your tests are located elsewhere, you should use the pytest config to specify
pytest_alembic_tests_path (defaults to tests/conftest.py), to point at your tests folder root.

Then you can define your own implementations of these fixtures


Setting up alembic_config

alembic_config is the primary point of entry for configurable options for the
alembic runner. See the API reference for a comprehensive list. This fixture can
often be omitted though, if your use of alembic is straightforward and/or uses alembic defaults.

The default implementation is:

from pytest_alembic.config import Config

@pytest.fixture
def alembic_config():
    """Override this fixture to configure the exact alembic context setup required.
    """
    return Config()





See Config for more details about the sort of options available on our config.



Setting up alembic_engine

alembic_engine is where you specify the engine with which the alembic_runner
should execute your tests.

The default alembic_engine implementation is:

@pytest.fixture
def alembic_engine():
    """Override this fixture to provide pytest-alembic powered tests with a database handle.
    """
    return sqlalchemy.create_engine("sqlite:///")





If you have a very simple database schema, you may be able to get away with the default
fixture implementation, which uses an in-memory SQLite engine. In most cases however,
SQLite will not be able to sufficiently model your migrations. Typically, DDL is where features
of databases tend to differ the most, and so the actual database you, should likely be
what your alembic_engine is.



Pytest Mock Resources

Our recommended approach is to use
pytest-mock-resources [https://pytest-mock-resources.readthedocs.io/],
another library we have open sourced which uses Docker to manage the lifecycle of an ephemeral
database instance.

This library is what pytest-alembic internally uses, so it’s the strategy we can most
easily guarantee should work.

If you use Postgres, MySQL, Redshift, or SQLite (or a database which reacts sufficiently closely)
pytest-mock-resources can support your usecase today. For other alembic-supported databases, file an issue!

from pytest_mock_resources import create_postgres_fixture

alembic_engine = create_postgres_fixture()







alembic_engine Invariants


Note

Depending on what you want, and how your code internally produces/consumes engines there is
plenty of flexibility in how pytest-alembic test engines interact with your own.

For example (using pytest-mock-resources), you can ensure that there’s no interdependence
between this engine and the one used by your own tests:

from pytest_mock_resources import create_postgres_fixture

pg = create_postgres_fixture()
alembic_engine = create_postgres_fixture()

def test_foo(pg, alembic_engine):  # two unique databases
    ...





Or if you would prefer them to be the same, you could instead do:

import pytest
from pytest_mock_resources import create_postgres_fixture

pg = create_postgres_fixture()

@pytest.fixture
def alembic_engine(pg):
    return pg

def test_foo(pg, alembic_engine):
    assert pg is alembic_engine  # they're literally the same
    ...







Of course, you can implement whatever strategy you want. However there are a few invariants
that an alembic_engine fixture should follow, to ensure that tests reliably pass and to avoid
inter-test state issues.


	The engine should point to a database that must be empty. It is out of scope for pytest-alembic
to manage the database state.


	You should not expect to be able to roll back changes made by these tests. Alembic will internally
perform commits, as do certain pytest-alembic features. Alembic is literally being
invoked in the same way you would normally run migrations, so it’s exactly as permanent.


	The yielded engine should not be inside a (manually created) transaction. The engine is configured
into Alembic itself, Alembic internals perform commits, and it will almost certainly not work
if you try to manage transactional state around Alembic.







Git(hub) Settings

[image: _images/github_setting.png]
We highly recommend you enable “Require branches to be up to date before merging” on repos
which have alembic migrations!

While this will require that people merging PRs to rebase on top of master before merging
(which we think is ideal for ensuring your build is always green anyways), it guarantees that
our tests are running against a known up-to-date migration history.

Without this option it is trivially easy to end up with an alembic version history with
2 or more heads which needs to be manually resolved.

Provider support


	Only GitLab EE supports an approximate option to GitHub’s.


	Only Bitbucket EE supports an approximate option to GitHub’s.








            

          

      

      

    

  

    
      
          
            
  
Running Tests

You have two primary options for running the configured set of tests:


	Automatically at the command-line via --test-alembic

Pytest Alembic automatically adds a flag, pytest --test-alembic, which will
automatically invoke the baked-in tests.

This can be convenient if you want to exclude migrations tests most of the time, but include
them for e.g. CI. By default, pytest tests would then, not run migrations tests.

Additionally, it means you don’t need to manually include the tests in a test file somewhere
in your project.

If your tests dont generally reside at/below a tests/ directory with a tests/conftest.py
file, you can/should set the pytest_alembic_tests_path option, described
below.



	You can directly import the tests you want to include at any point in your project.


tests/test_migrations.py

from pytest_alembic.tests import (
    test_model_definitions_match_ddl,
    test_single_head_revision,
    test_up_down_consistency,
    test_upgrade,
)







This can be convenient if you always want the migrations tests to run, or else want a reference
to the tests’ existence somewhere in your source code. Pytest would automatically include
the tests every time you run i.e. pytest tests.





In either case, you can exclude migrations tests using pytest’s “marker” system, i.e.
pytest -m "not alembic".


Configuration


Pytest Config

In any of the pytest config locations (pytest.ini, setup.cfg, pyproject.toml),
you can set any of the following configuration options to alter global pytest-alembic
behavior.


	pytest_alembic_include

List of built-in tests to include. If specified, ‘pytest_alembic_exclude’ is ignored.
If both are omitted, all tests are included. The tests should be listed as a comma delimited string
containing the tests’ names.



	pytest_alembic_exclude

List of built-in tests to exclude. Ignored if ‘pytest_alembic_include’ is specified.
The tests should be listed as a comma delimited string containing the tests’ names.



	pytest_alembic_tests_folder

The location under which the built-in tests will be bound. This defaults to ‘tests/’
(the tests themselves then being executed from tests/pytest_alembic/), the typical test
location. However this can be customized if pytest is, for example, invoked from a parent
directory like pytest folder/tests, or the tests are otherwise located at a different
location, relative to the pytest invocation.


Note

As of pytest-alembic version 0.8.5, this option is ignored. Instead, if you require customizing
the registration location, you should use pytest_alembic_tests_path instead.





	pytest_alembic_tests_path


Note

Introduced in v0.10.1.



The location at which the built-in tests will be bound. This defaults to ‘tests/conftest.py’.
Typically, you would want this to coincide with the path at which your alembic_engine is being
defined/registered. Note that this path must be the full path, relative to the root location
at which pytest is being invoked.

This option has replaced pytest_alembic_tests_folder due to changes in how pytest test collection
needed to be performed in around pytest ~7.0.

Additionally, this option is only required if you are using the --test-alembic flag.







Alembic Config

See the Config fixture for more detail.




Alternative to --test-alembic

There is some magic to the automatic inclusion of the built-in tests. It’s not obvious, from
looking at any of the test code, that these tests (sometimes) magically be included.

Also, one may want to include the built-in tests automatically, every time, without needing to
specify --test-alembic, or by doing so conditionally in-code.

Whatever the reason, it is possible to simply import the test implementations from
pytest_alembic directly.

Simply import the tests at whatever location you want tests to be included:


tests/test_migrations.py

from pytest_alembic.tests import test_single_head_revision
from pytest_alembic.tests import test_upgrade
from pytest_alembic.tests import test_model_definitions_match_ddl
from pytest_alembic.tests import test_up_down_consistency







Furthermore, doing this as well as using --test-alembic will cause the tests to be
run twice (since they’d be considered unique tests with different paths). So generally, these
methods should be considered mutually exclusive.



Multiple Alembic Histories

It may be the case that you have the histories for two separate databases (or schemas)
in a single project. How should you structure your tests?

This is likely one of the times you want to avoid the use of the --test-alembic
flag and the automatic insertion of tests.

Instead, you’ll likely want to want to make use of create_alembic_fixture().

from pytest_alembic import tests, create_alembic_fixture

# The argument here represents the equivalent to `alembic_config`. Depending
# on your setup, this may be configuring the "file" argument, "script_location",
# or some other way of configuring one or the other of your histories.
history_1 = create_alembic_fixture({"file": "alembic.ini"})

def test_single_head_revision_history_1(history_1):
    tests.test_single_head_revision(history_1)

def test_upgrade_history_1(history_1):
    tests.test_upgrade(history_1)

def test_model_definitions_match_ddl_history_1(history_1):
    tests.test_model_definitions_match_ddl(history_1)

def test_up_down_consistency_history_1(history_1):
    tests.test_up_down_consistency(history_1)

# The 2nd fixture, and the 2nd set of tests.
history_2 = create_alembic_fixture({"file": "history_2.ini"})

def test_single_head_revision_history_2(history_2):
    tests.test_single_head_revision(history_2)

def test_upgrade_history_2(history_2):
    tests.test_upgrade(history_2)

def test_model_definitions_match_ddl_history_2(history_2):
    tests.test_model_definitions_match_ddl(history_2)

def test_up_down_consistency_history_2(history_2):
    tests.test_up_down_consistency(history_2)





Due to limitations of how pytest test collection occurs, there’s currently no
obvious way to automatically set up and define these tests to occur against
different fixtures.



Pytest Marks

Pytest-alembic automatically marks all tests which use the alembic_runner fixture
(including all built-in tests) with the alembic mark.

This means you can optionally include/exclude migrations tests using the vanilla pytest mark
machinery like so:

pytest -m 'alembic'  # Run *only* alembic tests
pytest -m 'not alembic'  # Run everything *except* alembic tests









            

          

      

      

    

  

    
      
          
            
  
Custom data

To preempt the need to write an explicit test for every new migration,
there is a mechanism built into the config to automatically insert data
into the database before or upon reaching a given revision.

To that end:

@pytest.fixture
def alembic_config():
    return {
        "before_revision_data": {
            "fb4d3ab5f38d": [
                {"__tablename__": "foo", "id": 1, "name": "foo"},
                {"__tablename__": "bar", "id": 1, "name": "bar"},
            ],
        },
        "at_revision_data": {
            "a5a9ccc4e535": {
                "__tablename__": "foo",
                "id": 1,
                "name": "foo2",
            },
        },
    }





There are two, similiar but distinct options. before_revision_data, and at_revision_data.


	before_revision_data will insert the given data for all upgrade commands before performing
the upgrade to the given revision.


	at_revision_data will insert the given data for all upgrade commands after having performed
the upgrade to the given revision.




To be clear, you can use either of them to describe the same operation. But depending on the
circumstance (if for example, you are testing a real-world situation that you are trying to
semantically model more closely), one or the other option may be more appropriate.


Schema

The value for either before_revision_data or at_revision_data, should be a dict()
where the keys are the revision for which the data is being described.

The value can either be a dict() (single row), or a list() of dict() (multiple
rows). __tablename__ is a special key which tells us the name of the table to insert the
data into, and the rest of the spec should describe the columns and the column data for that row,
similar to what you might do for a table.insert().values(...) [https://docs.sqlalchemy.org/en/13/core/dml.html#sqlalchemy.sql.expression.Insert.values] call.

Alternatively, you can directly import and instantiate a RevisionSpec and set that as the
value to  either before_revision_data or at_revision_data.



Example

Given the above data, and history of:

23256c7bf855 > fb4d3ab5f38d -> a5a9ccc4e535 -> b835ae9ff1d1





We would:


	Upgrade to 23256c7bf855


	Insert
{"__tablename__": "foo", "id": 1, "name": "foo"} and
{"__tablename__": "bar", "id": 1, "name": "bar"}


	Upgrade to fb4d3ab5f38d


	Upgrade to a5a9ccc4e535


	Insert
{"__tablename__": "foo", "id": 1, "name": "foo2"}


	Upgrade to b835ae9ff1d1








            

          

      

      

    

  

    
      
          
            
  
Writing Custom Tests

Honestly, there’s not much to it by this point!

from sqlalchemy import text

def test_gnarly_migration_xyz123(alembic_runner, alembic_engine):
    # Migrate up to, but not including this new migration
    alembic_runner.migrate_up_before('xyz123')

    # Perform some very specific data setup, because this migration is sooooo complex.
    # ...
    alembic_runner.insert_into('tablename', dict(id=1, name='foo'))
    # Or you can optionally accept the `alembic_engine` fixture, which is a
    # sqlalchemy engine object, with which you can do whatever setup you'd like.

    alembic_runner.migrate_up_one()

    with alembic_engine.connect() as conn:
        rows = conn.execute(text("SELECT id from foo")).fetchall()

    assert rows == [(1,)]





alembic_runner has all sorts of convenience methods
for altering the state of the database for your test:


	
class pytest_alembic.runner.MigrationContext(command_executor, revision_data, connection_executor, history, config)

	Within a given environment/execution context, executes alembic commands.


	
property current: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the list of revision heads.






	
generate_revision(process_revision_directives=None, prevent_file_generation=True, autogenerate=False, **kwargs)

	Generate a test revision.

If prevent_file_generation is True, the final act of this process raises a
RevisionSuccess, which is used as a sentinal to indicate the revision was
generated successfully, while not actually finishing the generation of the
revision file on disk.






	
property heads: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get the list of revision heads.

Result is cached for the lifetime of the MigrationContext.






	
insert_into(table, data=None, revision=None)

	Insert data into a given table.


	Parameters:

	
	table (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The name of the table to insert data into


	data (Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict], List [https://docs.python.org/3/library/typing.html#typing.List], None [https://docs.python.org/3/library/constants.html#None]]) – The data to insert. This is eventually passed through to SQLAlchemy’s
Table class values method, and so should accept either a list of
dict`s representing a list of rows, or a `dict representing one row.


	revision – The revision of MetaData to use as the table definition for the insert.













	
managed_downgrade(dest_revision)

	Perform an downgrade, one migration at a time.






	
managed_upgrade(dest_revision)

	Perform an upgrade, one migration at a time, inserting static data at the given points.






	
migrate_down_before(revision)

	Migrate down to, but not including the given revision.






	
migrate_down_one()

	Migrate down by exactly one revision.






	
migrate_down_to(revision)

	Migrate down to, and including the given revision.






	
migrate_up_before(revision)

	Migrate up to, but not including the given revision.






	
migrate_up_one()

	Migrate up by exactly one revision.






	
migrate_up_to(revision)

	Migrate up to, and including the given revision.






	
raw_command(*args, **kwargs)

	Execute a raw alembic command.






	
refresh_history()

	Refresh the context’s version of the alembic history.

Note this is not done automatically to avoid the expensive reevaluation
step which can make long histories take seconds longer to evaluate for
each test.


	Return type:

	AlembicHistory










	
roundtrip_next_revision()

	Upgrade, downgrade then upgrade.

This is meant to ensure that the given revision is idempotent.






	
table_at_revision(name, *, revision=None, schema=None)

	Return a reference to a sqlalchemy.Table at the given revision.


	Parameters:

	
	name – The name of the table to produce a sqlalchemy.Table for.


	revision – The revision of the table to return.


	schema – The schema of the table.



















            

          

      

      

    

  

    
      
          
            
  
Experimental Tests


Note

Experimental tests may be moved to the default test section at some point.
As that time their name would be changed, and the old name will become
deprecated (though for a time, just as a deprecation warning).




test_all_models_register_on_metadata

Diffs the set of tables registered by alembic’s env.py versus the set
of full tables we find throughout your models package/module.


Enabling all_models_register_on_metadata (TL;DR)

You can either enable this test with no configuration, which will attempt to
identify the source module from which the env.py is loading its
MetaData and automatically search in that module/package


pyproject.toml/setup.cfg/pytest.ini

# pyproject.toml
[tool.pytest.ini_options]
pytest_alembic_include_experimental = 'all_models_register_on_metadata'

# or setup.cfg/pytest.ini
[pytest]
pytest_alembic_include_experimental = all_models_register_on_metadata







Or you can manually import and execute the test somewhere in your own tests.
Using this mechanism, you would be able to circumvent the automatic detection
and provide the module/package directly.

from pytest_alembic import tests

def test_all_models_register_on_metadata(alembic_runner):
   tests.experimental.test_all_models_register_on_metadata(alembic_runner, 'package.models')







How all_models_register_on_metadata works

The problem this test attempts to solve is best described with an example. Consider
the following package structure:

package/
  models/
     __init__.py
     foo.py
     bar.py
     baz.py
  other_packages/
  other_modules.py

migrations/
   env.py





Next, a typical package containing a MetaData or declarative_base and models or tables. Yours may look superficially different than ours, but you will almost
certainly define your base, and either define or import any models or tables
after its definition.


__init__.py

import sqlalchemy
from sqlalchemy import Column, types
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

from package.models import (
   foo,
   bar,
)







The specifics of the table definitions are not particularly important, so we’ll
omit bar.py and baz.py (imagine they’re essentially identical!), but here’s
foo.py.


foo.py

from package.models import Base

class Foo(Base):
 __tablename__ = "foo"

 id = Column(types.Integer(), autoincrement=True, primary_key=True)







Finally, an excerpt from what is commonly autogenerated by running
alembic init.


env.py

...
from package.models import Base
target_metadata = Base.metadata
...
with connectable.connect() as connection:
    context.configure(connection=connection, target_metadata=target_metadata)
    ...







And now we get to the crux of the problem.

A keen eye may have noticed that baz is not being imported above, and that’s
not a mistake! Elsewhere in your code (other_packages/other_modules, for
example) you will likely import all of your models at some point. So when you go
to actually use the models, you may not even notice that there is anything wrong.

However as far as alembic is concerned:


	It will load the env.py


	env.py only imports package.models (which notably omits package.models.baz!)


	Base/Base.metadata will therefore only have foo and bar tables
registered on it.




So when you go to run alembic revision --autogenerate, it will be unaware of the
“baz” table and either omit its creation or suggest it be dropped if you had already
created it.

This test is meant to be a lint against such scenarios and will fail in any case
where there is no direct import of any tables defined on a MetaData during the
course of executing the env.py through alembic.


Note

The original inspiration for this test was actually a refactor which changed
some pre-existing imports around.

This lead to an already created table no longer being incidentally imported
(somewhere else in the codebase!) during the normal course of importing
our equivalent of package.models.

This immediately resulted in an --autogenerate suggesting that the table
be dropped, since it was alembic assumes you’ve deleted the model entirely!






test_downgrade_leaves_no_trace

Attempts to ensure that the downgrade for every migration precisely undoes
the changes performed in the upgrade.


Enabling downgrade_leaves_no_trace (TL;DR)


pyproject.toml/setup.cfg/pytest.ini

# pyproject.toml
[tool.pytest.ini_options]
pytest_alembic_include_experimental = 'downgrade_leaves_no_trace'

# or setup.cfg/pytest.ini
[pytest]
pytest_alembic_include_experimental = downgrade_leaves_no_trace







Or you can manually import and execute the test somewhere in your own tests.
Using this mechanism, you would be able to circumvent the automatic detection
and provide the module/package directly.

from pytest_alembic import tests

def test_downgrade_leaves_no_trace(alembic_runner):
   tests.experimental.test_downgrade_leaves_no_trace(alembic_runner)







How downgrade_leaves_no_trace works

This test works by attempting to produce two autogenerated migrations.


	The first is the comparison between the original state of the database before the
given migration’s upgrade occurs, and the MetaData produced by having performed
the upgrade.

This should approximate the autogenerated migration that alembic
would have generated to produce your upgraded database state itself.



	The 2nd is the comparison between the state of the database after having
performed the upgrade -> downgrade cycle for this revision, and the same
MetaData used in the first comparison.

This should approximate what alembic would have autogenerated if you
actual performed the downgrade on your database.





In the event these two autogenerations do not match, it implies that your
upgrade -> downgrade cycle produces a database state which is different
(enough for alembic to detect) from the state of the database without having
performed the migration at all.


Note

This isn’t perfect! Alembic autogeneration will not detect many
kinds of changes! If you encounter some scenario in which this does not
detect a change you’d expect it to, alembic already has extensive ability
to customize and extend the autogeneration capabilities.








            

          

      

      

    

  

    
      
          
            
  
Asyncio

Support for asyncio is largely built on top of the Alembic Cookbook [https://alembic.sqlalchemy.org/en/latest/cookbook.html#using-asyncio-with-alembic] example,
inlined here for posterity:

import asyncio

# ... no change required to the rest of the code

def do_run_migrations(connection):
    context.configure(connection=connection, target_metadata=target_metadata)

    with context.begin_transaction():
        context.run_migrations()


async def run_migrations_online():
    """Run migrations in 'online' mode.

    In this scenario we need to create an Engine
    and associate a connection with the context.

    """
    connectable = AsyncEngine(
        engine_from_config(
            config.get_section(config.config_ini_section),
            prefix="sqlalchemy.",
            poolclass=pool.NullPool,
            future=True,
        )
    )

    async with connectable.connect() as connection:
        await connection.run_sync(do_run_migrations)

    await connectable.dispose()


if context.is_offline_mode():
    run_migrations_offline()
else:
    asyncio.run(run_migrations_online())





Note that this is a prerequisite for how one gets alembic itself to run with an async
connection, when running alembic commands interatively yourself.

At this point, you just need to make sure the alembic_engine fixture is producing a async engine.
something like

from sqlalchemy import create_engine
from sqlalchemy.ext.asyncio import create_engine_async, AsyncEngine

@pytest.fixture
def alembic_engine(...):
    return create_async_engine(URL(...))


@pytest.fixture
def alembic_engine(...):
    engine = create_engine(URL(...))
    return AsyncEngine(engine)


# or, for example, with pytest-mock-resources
from pytest_mock_resources import create_postgres_fixture

alembic_engine = create_postgres_fixture(async_=True)






A slightly more versatile setup

The above env.py setup comes with a caveat. It assumes execution of the migrations
solely through async. Due to the way sqlalchemy/alembic async works (as evidenced by
even their suggested use of run_sync), this can be a problem.

For pytest-alembic the only such built in test is test_downgrade_leaves_no_trace.
For compatibility with (majority) sync alembic use, it’s implemented sychronously, and internally
requires performing transaction manipulation which would otherwise require re-entrant use of
asyncio.run.

If you don’t use this test, and haven’t implemented any of your own which encounter this issue,
then feel free to stick with the official alembic suggestion. However a slight reorganization of
their suggested setup allows for both sychronous and asynchronous execution of migrations, and
thus fixes test_downgrade_leaves_no_trace.

from sqlalchemy.ext.asyncio.engine import AsyncEngine

def run_migrations_online():
    connectable = context.config.attributes.get("connection", None)

    if connectable is None:
        connectable = AsyncEngine(
            engine_from_config(
                context.config.get_section(context.config.config_ini_section),
                prefix="sqlalchemy.",
                poolclass=pool.NullPool,
                future=True,
            )
        )

    # Note, we decide whether to run asynchronously based on the kind of engine we're dealing with.
    if isinstance(connectable, AsyncEngine):
        asyncio.run(run_async_migrations(connectable))
    else:
        do_run_migrations(connectable)


# Then use their setup for async connection/running of the migration
async def run_async_migrations(connectable):
    async with connectable.connect() as connection:
        await connection.run_sync(do_run_migrations)

    await connectable.dispose()


def do_run_migrations(connection):
    context.configure(connection=connection, target_metadata=target_metadata)

    with context.begin_transaction():
        context.run_migrations()


# But the outer layer still allows sychronous execution also.
run_migrations_online()









            

          

      

      

    

  

    
      
          
            
  
API


Fixtures


alembic_runner


	
pytest_alembic.plugin.fixtures.alembic_runner(alembic_config, alembic_engine)

	Produce the primary alembic migration context in which to execute alembic tests.

This fixture allows authoring custom tests which are specific to your particular
migration history.

Examples

>>> def test_specific_migration(alembic_runner):
...     alembic_runner.migrate_up_to('xxxxxxx')
...     assert ...











alembic_config


	
pytest_alembic.plugin.fixtures.alembic_config()

	Override this fixture to configure the exact alembic context setup required.

The return value of this fixture can be one of a few types.
:rtype: Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Config, Config]


	If you’re only configuring alembic-native configuration, a alembic.config.Config
object is accepted as configuration. This largely leaves pytest-alembic out
of the setup, so depending on your settings, might be the way to go.


	If you only have a couple of options to set, you might choose to return
a Dict.

The following common alembic config options are accepted as keys.



	file/config_file_name (commonly alembic.ini)


	script_location


	sqlalchemy.url


	target_metadata


	process_revision_directives


	include_schemas







Additionally you can send a file key (akin to alembic -c), should your
alembic.ini be otherwise named.

Note that values here, represent net-additive options on top of what you might
already have configured in your env.py. You should generally prefer to
configure your env.py however you like it and omit such options here.

You may also use this dict to set pytest-alembic specific features:



	before_revision_data


	at_revision_data


	minimum_downgrade_revision









	You can also directly return a Config class instance.
This is your only option if you want to use both pytest-alembic specific features
and construct your own alembic.config.Config.




Examples

>>> @pytest.fixture
... def alembic_config():
...     return {'file': 'migrations.ini'}





>>> @pytest.fixture
... def alembic_config():
...     alembic_config = alembic.config.Config()
...     alembic_config.set_main_option("script_location", ...)
...     return alembic_config










Config


	
class pytest_alembic.config.Config(config_options=<factory>, alembic_config=None, before_revision_data=None, at_revision_data=None, minimum_downgrade_revision=None, skip_revisions=None)

	Pytest-alembic configuration options.


	
	config_options: Meant to simplify the creation of alembic.config.Config
	objects. Supply keys common to customization in alembic configuration. For
example:


	file/config_file_name (commonly alembic.ini)


	script_location


	sqlalchemy.url


	target_metadata


	process_revision_directives


	include_schemas










	Both before_revision_data and at_revision_data are described in detail
in Custom data.


	minimum_downgrade_revision can be used to set a lower bound on the
downgrade migrations which are run built-in tests like test_up_down_consistency
and test_downgrade_leaves_no_trace.


	skip_revisions can be used to avoid executing specific revisions, particularly
if they are slow and you can guarantee to yourself that the difference in the resulting
migrations history wont have a meaningful effect. Note that skipping migrations can be
“dangerous”, because either DDL or data differences could lead to migrations which
pass in tests, but fail in practice.





	For example:
	>>> import pytest





>>> @pytest.fixture
... def alembic_config():
...    return Config(minimum_downgrade_revision='abcde12345')





This would essentially short-circuit and avoid running the downgrade
migrations including and below this migration.






Note

If a downgrade raises a NotImplementedError, it will have the same effect
as a minimum_downgrade_revision, but will emit a warning suggesting
the use of this feature instead.




	
classmethod from_raw_config(raw_config=None)

	Adapt between pre-produced alembic config and raw config options.

Allows one to specify raw pytest-alembic config options through raw dictionary,
as well as being flexible enough to allow a literal alembic Config object.

Examples

>>> Config.from_raw_config()
Config(config_options={}, alembic_config=None, before_revision_data=None, at_revision_data=None, minimum_downgrade_revision=None, skip_revisions=None)





>>> Config.from_raw_config({'minimum_downgrade_revision': 'abc123'})
Config(config_options={}, alembic_config=None, before_revision_data=None, at_revision_data=None, minimum_downgrade_revision='abc123', skip_revisions=None)





>>> Config.from_raw_config(Config(minimum_downgrade_revision='abc123'))
Config(config_options={}, alembic_config=None, before_revision_data=None, at_revision_data=None, minimum_downgrade_revision='abc123', skip_revisions=None)
















alembic_engine


	
pytest_alembic.plugin.fixtures.alembic_engine()

	Override this fixture to provide pytest-alembic powered tests with a database handle.







create_alembic_fixture


	
pytest_alembic.plugin.fixtures.create_alembic_fixture(raw_config=None)

	Create a new fixture alembic_runner-like fixture.

In many cases, this function should not be strictly necessary. You can
generally rely solely on the --test-alembic flag, automatic insertion
of tests, and the alembic_runner() fixture.

However this may be useful in some situations:


	If you would generally prefer to avoid the --test-alembic flag and
automatic test insertion, this is the function for you!


	If you have multiple alembic histories and therefore require more than one
fixture, you will minimally need to use this for the 2nd history (if
not both)




Examples

>>> from pytest_alembic import tests
>>>
>>> alembic = create_alembic_fixture()
>>>
>>> def test_upgrade_head(alembic):
...     tests.test_upgrade_head(alembic)
>>>
>>> def test_specific_migration(alembic):
...     alembic_runner.migrate_up_to('xxxxxxx')
...     assert ...





Config can also be supplied similarly to the alembic_config() fixture.

>>> alembic = create_alembic_fixture({'file': 'migrations.ini'})












Alembic Runner

The object yielded into a test from an alembic_runner fixture is the MigrationContext


	
class pytest_alembic.runner.MigrationContext(command_executor, revision_data, connection_executor, history, config)

	Within a given environment/execution context, executes alembic commands.


	
property current: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the list of revision heads.






	
generate_revision(process_revision_directives=None, prevent_file_generation=True, autogenerate=False, **kwargs)

	Generate a test revision.

If prevent_file_generation is True, the final act of this process raises a
RevisionSuccess, which is used as a sentinal to indicate the revision was
generated successfully, while not actually finishing the generation of the
revision file on disk.






	
property heads: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get the list of revision heads.

Result is cached for the lifetime of the MigrationContext.






	
insert_into(table, data=None, revision=None)

	Insert data into a given table.


	Parameters:

	
	table (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The name of the table to insert data into


	data (Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict], List [https://docs.python.org/3/library/typing.html#typing.List], None [https://docs.python.org/3/library/constants.html#None]]) – The data to insert. This is eventually passed through to SQLAlchemy’s
Table class values method, and so should accept either a list of
dict`s representing a list of rows, or a `dict representing one row.


	revision – The revision of MetaData to use as the table definition for the insert.













	
managed_downgrade(dest_revision)

	Perform an downgrade, one migration at a time.






	
managed_upgrade(dest_revision)

	Perform an upgrade, one migration at a time, inserting static data at the given points.






	
migrate_down_before(revision)

	Migrate down to, but not including the given revision.






	
migrate_down_one()

	Migrate down by exactly one revision.






	
migrate_down_to(revision)

	Migrate down to, and including the given revision.






	
migrate_up_before(revision)

	Migrate up to, but not including the given revision.






	
migrate_up_one()

	Migrate up by exactly one revision.






	
migrate_up_to(revision)

	Migrate up to, and including the given revision.






	
raw_command(*args, **kwargs)

	Execute a raw alembic command.






	
refresh_history()

	Refresh the context’s version of the alembic history.

Note this is not done automatically to avoid the expensive reevaluation
step which can make long histories take seconds longer to evaluate for
each test.


	Return type:

	AlembicHistory










	
roundtrip_next_revision()

	Upgrade, downgrade then upgrade.

This is meant to ensure that the given revision is idempotent.






	
table_at_revision(name, *, revision=None, schema=None)

	Return a reference to a sqlalchemy.Table at the given revision.


	Parameters:

	
	name – The name of the table to produce a sqlalchemy.Table for.


	revision – The revision of the table to return.


	schema – The schema of the table.

















	
class pytest_alembic.history.AlembicHistory(map, revisions, revision_indices, revisions_by_index)

	
	
classmethod parse(revision_map)

	Extract the set of migration revision hashes from alembic’s notion of the history.


	Return type:

	AlembicHistory














	
class pytest_alembic.revision_data.RevisionData(before_revision_data, at_revision_data)

	Describe the data which should exist at given revisions when performing upgrades.


	
classmethod from_config(config)

	Produce a RevisionData from raw configuration from alembic_config().






	
get_at(revision)

	Yield the individual data insertions which should occur upon reaching the given revision.


	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict], List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict]]]










	
get_before(revision)

	Yield the individual data insertions which should occur before the given revision.


	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict], List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict]]]














	
class pytest_alembic.revision_data.RevisionSpec(data)

	Describe a set of valid database data at a set of revisions.


	
get(revision)

	Get the database data described at a particular revision.


	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict], List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict]]]










	
classmethod parse(data)

	Parse a raw dict structure into a RevisionSpec.













            

          

      

      

    

  

    
      
          
            
  
Contributing


Prerequisites

If you are not already familiar with Poetry [https://poetry.eustace.io/], this is a poetry project, so you’ll need this!



Getting Setup

Note, while the project itself provisionally runs on python 3.6, test dependencies
including pytest-mock-resources, coverage, and black, have minimum python versions of 3.7.
So local development of pytest-alembic itself requires. Additionally this means
we dont test 3.6 support, so supporting it is best effort until it becomes inconvenient.

See the Makefile for common commands, but for some basic setup:

# Installs the package with all the extras
make install





And you’ll want to make sure you can run the tests and linters successfully:

# Runs CI-level tests, with coverage reports
make test lint







Need help

Submit an issue!





            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pytest_alembic	
       

     
       	
       	   
       pytest_alembic.history	
       

     
       	
       	   
       pytest_alembic.revision_data	
       

     
       	
       	   
       pytest_alembic.runner	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | F
 | G
 | H
 | I
 | M
 | P
 | R
 | T
 


A


  	
      	alembic_config() (in module pytest_alembic.plugin.fixtures)


      	alembic_engine() (in module pytest_alembic.plugin.fixtures)


  

  	
      	alembic_runner() (in module pytest_alembic.plugin.fixtures)


      	AlembicHistory (class in pytest_alembic.history)


  





C


  	
      	Config (class in pytest_alembic.config)


  

  	
      	create_alembic_fixture() (in module pytest_alembic.plugin.fixtures)


      	current (pytest_alembic.runner.MigrationContext property)


  





F


  	
      	from_config() (pytest_alembic.revision_data.RevisionData class method)


  

  	
      	from_raw_config() (pytest_alembic.config.Config class method)


  





G


  	
      	generate_revision() (pytest_alembic.runner.MigrationContext method)


      	get() (pytest_alembic.revision_data.RevisionSpec method)


  

  	
      	get_at() (pytest_alembic.revision_data.RevisionData method)


      	get_before() (pytest_alembic.revision_data.RevisionData method)


  





H


  	
      	heads (pytest_alembic.runner.MigrationContext property)


  





I


  	
      	insert_into() (pytest_alembic.runner.MigrationContext method)


  





M


  	
      	managed_downgrade() (pytest_alembic.runner.MigrationContext method)


      	managed_upgrade() (pytest_alembic.runner.MigrationContext method)


      	migrate_down_before() (pytest_alembic.runner.MigrationContext method)


      	migrate_down_one() (pytest_alembic.runner.MigrationContext method)


      	migrate_down_to() (pytest_alembic.runner.MigrationContext method)


      	migrate_up_before() (pytest_alembic.runner.MigrationContext method)


  

  	
      	migrate_up_one() (pytest_alembic.runner.MigrationContext method)


      	migrate_up_to() (pytest_alembic.runner.MigrationContext method)


      	MigrationContext (class in pytest_alembic.runner)


      	
    module

      
        	pytest_alembic.history


        	pytest_alembic.revision_data


        	pytest_alembic.runner


      


  





P


  	
      	parse() (pytest_alembic.history.AlembicHistory class method)

      
        	(pytest_alembic.revision_data.RevisionSpec class method)


      


      	
    pytest_alembic.history

      
        	module


      


  

  	
      	
    pytest_alembic.revision_data

      
        	module


      


      	
    pytest_alembic.runner

      
        	module


      


  





R


  	
      	raw_command() (pytest_alembic.runner.MigrationContext method)


      	refresh_history() (pytest_alembic.runner.MigrationContext method)


  

  	
      	RevisionData (class in pytest_alembic.revision_data)


      	RevisionSpec (class in pytest_alembic.revision_data)


      	roundtrip_next_revision() (pytest_alembic.runner.MigrationContext method)


  





T


  	
      	table_at_revision() (pytest_alembic.runner.MigrationContext method)


  







            

          

      

      

    

  _images/github_setting.png
@ Require status checks to pass before merging
Choose which status checks must pass before branches can be merged into a branch that matches this rule.
When enabled, commits must first be pushed to another branch, then merged or pushed directly to a branch
that matches this rule after status checks have passed.

@ Require branches to be up to date before merging
This ensures pull requests targeting a matching branch have been tested with the latest code. This setting

will not take effect unless at least one status check is enabled (see below).





_static/file.png





_static/github_setting.png
@ Require status checks to pass before merging
Choose which status checks must pass before branches can be merged into a branch that matches this rule.
When enabled, commits must first be pushed to another branch, then merged or pushed directly to a branch
that matches this rule after status checks have passed.

@ Require branches to be up to date before merging
This ensures pull requests targeting a matching branch have been tested with the latest code. This setting

will not take effect unless at least one status check is enabled (see below).





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Pytest Alembic’s documentation!
        


        		
          Quickstart
          
            		
              Introduction
            


            		
              The pitch
              
                		
                  Built-in Tests
                


                		
                  Custom Tests
                


              


            


            		
              Installing
            


          


        


        		
          Setup
          
            		
              env.py
              
                		
                  Caplog Issues
                


                		
                  Optional but helpful additions
                


              


            


            		
              Setting up Fixtures
              
                		
                  Setting up alembic_config
                


                		
                  Setting up alembic_engine
                


                		
                  Pytest Mock Resources
                


                		
                  alembic_engine Invariants
                


              


            


            		
              Git(hub) Settings
            


          


        


        		
          Running Tests
          
            		
              Configuration
              
                		
                  Pytest Config
                


                		
                  Alembic Config
                


              


            


            		
              Alternative to –test-alembic
            


            		
              Multiple Alembic Histories
            


            		
              Pytest Marks
            


          


        


        		
          Custom Data Hooks
          
            		
              Schema
            


            		
              Example
            


          


        


        		
          Custom Tests
        


        		
          Experimental Tests
          
            		
              test_all_models_register_on_metadata
              
                		
                  Enabling all_models_register_on_metadata (TL;DR)
                


                		
                  How all_models_register_on_metadata works
                


              


            


            		
              test_downgrade_leaves_no_trace
              
                		
                  Enabling downgrade_leaves_no_trace (TL;DR)
                


                		
                  How downgrade_leaves_no_trace works
                


              


            


          


        


        		
          Asyncio
          
            		
              A slightly more versatile setup
            


          


        


        		
          API
          
            		
              Fixtures
              
                		
                  alembic_runner
                


                		
                  alembic_config
                


                		
                  alembic_engine
                


                		
                  create_alembic_fixture
                


              


            


            		
              Alembic Runner
              
                		
                  MigrationContext
                


                		
                  AlembicHistory
                


                		
                  RevisionData
                


                		
                  RevisionSpec
                


              


            


          


        


        		
          Contributing
          
            		
              Prerequisites
            


            		
              Getting Setup
            


            		
              Need help
            


          


        


      


    
  

_static/plus.png





