
Pytest Alembic
Release 0.4.0

unknown

Apr 18, 2023

CONTENTS:

1 Quickstart 1
1.1 Introduction . 1
1.2 The pitch . 1
1.3 Installing . 3

2 Setup 5
2.1 env.py . 5
2.2 Setting up Fixtures . 6
2.3 Git(hub) Settings . 9

3 Running Tests 11
3.1 Configuration . 11
3.2 Alternative to --test-alembic . 12
3.3 Multiple Alembic Histories . 13
3.4 Pytest Marks . 14

4 Custom data 15
4.1 Schema . 16
4.2 Example . 16

5 Writing Custom Tests 17

6 Experimental Tests 21
6.1 test_all_models_register_on_metadata . 21
6.2 test_downgrade_leaves_no_trace . 23

7 Asyncio 25
7.1 A slightly more versatile setup . 26

8 API 29
8.1 Fixtures . 29
8.2 Alembic Runner . 32

9 Contributing 35
9.1 Prerequisites . 35
9.2 Getting Setup . 35
9.3 Need help . 35

10 Indices and tables 37

Python Module Index 39

i

Index 41

ii

CHAPTER

ONE

QUICKSTART

See the full documentation here.

1.1 Introduction

A pytest plugin to test alembic migrations (with default tests) and which enables you to write tests specific to your
migrations.

$ pip install pytest-alembic
$ pytest --test-alembic

...
::pytest_alembic/tests/model_definitions_match_ddl <- . PASSED [25%]
::pytest_alembic/tests/single_head_revision <- . PASSED [50%]
::pytest_alembic/tests/up_down_consistency <- . PASSED [75%]
::pytest_alembic/tests/upgrade <- . PASSED [100%]

============================== 4 passed in 2.32s ===============================

1.2 The pitch

Have you ever merged a change to your models and you forgot to generate a migration?

Have you ever written a migration only to realize that it fails when there’s data in the table?

Have you ever written a perfect migration only to merge it and later find out that someone else merged also merged a
migration and your CD is now broken!?

pytest-alembic is meant to (with a little help) solve all these problems and more. Note, due to a few different factors,
there may be some minimal required setup; however most of it is boilerplate akin to the setup required for alembic itself.

1

https://github.com/schireson/pytest-alembic/actions/workflows/build.yml/badge.svg
https://codecov.io/gh/schireson/pytest-alembic
https://pytest-alembic.readthedocs.io/en/latest/?badge=latest
https://pytest-alembic.readthedocs.io/en/latest/
http://pytest-alembic.readthedocs.io/en/latest/setup.html

Pytest Alembic, Release 0.4.0

1.2.1 Built-in Tests

• test_single_head_revision

Assert that there only exists one head revision.

We’re not sure what realistic scenario involves a diverging history to be desirable. We have only seen it be the
result of uncaught merge conflicts resulting in a diverged history, which lazily breaks during deployment.

• test_upgrade

Assert that the revision history can be run through from base to head.

• test_model_definitions_match_ddl

Assert that the state of the migrations matches the state of the models describing the DDL.

In general, the set of migrations in the history should coalesce into DDL which is described by the current set of
models. Therefore, a call to revision --autogenerate should always generate an empty migration (e.g. find
no difference between your database (i.e. migrations history) and your models).

• test_up_down_consistency

Assert that all downgrades succeed.

While downgrading may not be lossless operation data-wise, there’s a theory of database migrations that says
that the revisions in existence for a database should be able to go from an entirely blank schema to the finished
product, and back again.

• Experimental tests

– all_models_register_on_metadata

Assert that all defined models are imported statically.

Prevents scenarios in which the minimal import of your models in your env.py does not import all extant
models, leading alembic to not autogenerate all your models, or (worse!) suggest the deletion of tables
which should still exist.

– downgrade_leaves_no_trace

Assert that there is no difference between the state of the database pre/post downgrade.

In essence this is a much more strict version of test_up_down_consistency, where the state of a Meta-
Data before and after a downgrade are identical as far as alembic (autogenerate) is concerned.

These tests will need to be enabled manually because their semantics or API are not yet guaranteed to stay the
same. See the linked docs for more details!

Let us know if you have any ideas for more built-in tests which would be generally useful for most alembic histories!

1.2.2 Custom Tests

For more information, see the docs for custom tests (example below) or custom static data (to be inserted automatically
before a given revision).

Sometimes when writing a particularly gnarly data migration, it helps to be able to practice a little timely TDD, since
there’s always the potential you’ll trash your actual production data.

With pytest-alembic, you can write tests directly, in the same way that you would normally, through the use of the
alembic_runner fixture.

2 Chapter 1. Quickstart

http://pytest-alembic.readthedocs.io/en/latest/experimental_tests.html
http://pytest-alembic.readthedocs.io/en/latest/custom_tests.html
http://pytest-alembic.readthedocs.io/en/latest/custom_data.html

Pytest Alembic, Release 0.4.0

def test_gnarly_migration_xyz123(alembic_engine, alembic_runner):
Migrate up to, but not including this new migration
alembic_runner.migrate_up_before('xyz123')

Perform some very specific data setup, because this migration is sooooo complex.
...
alembic_engine.execute(table.insert(id=1, name='foo'))

alembic_runner.migrate_up_one()

alembic_runner has a number of methods designed to make it convenient to change the state of your database up,
down, and all around.

1.3 Installing

pip install "pytest-alembic"

1.3. Installing 3

Pytest Alembic, Release 0.4.0

4 Chapter 1. Quickstart

CHAPTER

TWO

SETUP

2.1 env.py

The default env.py file that alembic will autogenerate for you includes a snippet like so:

def run_migrations_online():
connectable = engine_from_config(

config.get_section(config.config_ini_section),
prefix="sqlalchemy.",
poolclass=pool.NullPool,

)

This is fine, but pytest-alembic needs to provide alembic with a connection at runtime. So to allow us to produce
that connection in a way that env.py understands, modify the above snippet to resemble:

def run_migrations_online():
connectable = context.config.attributes.get("connection", None)

if connectable is None:
connectable = engine_from_config(

context.config.get_section(context.config.config_ini_section),
prefix="sqlalchemy.",
poolclass=pool.NullPool,

)

2.1.1 Caplog Issues

The default env.py file that alembic will autogenerate for you also includes a call to logging.config.
fileConfig(). Given that alembic tests invoke the env.py, and logging.config.fileConfig() has a default
argument of disable_existing_loggers=True, this can inadvertently break tests which use pytest’s caplog fix-
ture.

To fix this, simply provide disable_existing_loggers=False to fileConfig.

Warning: Additionally, if you are a user of logging.basicConfig(), note that logging.basicConfig()
“does nothing if the root logger already has handlers configured”, (which is why we generally try to avoid
basicConfig) and may cause issues for similar reasons.

5

https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig
https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig
https://docs.python.org/3/library/logging.config.html#logging.config.fileConfig
https://docs.python.org/3/library/logging.html#logging.basicConfig
https://docs.python.org/3/library/logging.html#logging.basicConfig

Pytest Alembic, Release 0.4.0

Note: Python 3.8 added a force=True keyword to logging.basicConfig(), which makes it somewhat less haz-
ardous to use.

2.1.2 Optional but helpful additions

Alembic comes with a number of other options to customize how the autogeneration of revisions is handled, but most
of them are disabled by default. There are many good reasons your particular migrations might not want some of these
options enabled; but if they don’t apply to your setup, we think they increase the quality of the safety this library helps
to provide.

Further down in your env.py, you’ll see a configure block.

with connectable.connect() as connection:
context.configure(

connection=connection,
target_metadata=target_metadata,
This is where we want to add more options!

)

with context.begin_transaction():
context.run_migrations()

Consider enabling the following options:

• compare_type=True: Indicates type comparison behavior during an autogenerate operation.

• compare_server_default=True: Indicates server default comparison behavior during an autogenerate oper-
ation.

• include_schemas=True: If True, autogenerate will scan across all schemas located by the SQLAlchemy
get_schema_names() method, and include all differences in tables found across all those schemas. This may
only be useful if you make use of schemas.

2.2 Setting up Fixtures

We expose 2 explicitly overridable fixtures alembic_config and alembic_engine.

One should generally put the implementations of alembic_config and alembic_engine in a conftest.py (a special file
recognized by pytest) at the root of your tests folder, typically tests/conftest.py.

If your tests are located elsewhere, you should use the pytest config to specify pytest_alembic_tests_path (defaults
to tests/conftest.py), to point at your tests folder root.

Then you can define your own implementations of these fixtures

6 Chapter 2. Setup

https://docs.python.org/3/library/logging.html#logging.basicConfig

Pytest Alembic, Release 0.4.0

2.2.1 Setting up alembic_config

alembic_config is the primary point of entry for configurable options for the alembic runner. See the API reference for
a comprehensive list. This fixture can often be omitted though, if your use of alembic is straightforward and/or uses
alembic defaults.

The default implementation is:

from pytest_alembic.config import Config

@pytest.fixture
def alembic_config():

"""Override this fixture to configure the exact alembic context setup required.
"""
return Config()

See Config for more details about the sort of options available on our config.

2.2.2 Setting up alembic_engine

alembic_engine is where you specify the engine with which the alembic_runner should execute your tests.

The default alembic_engine implementation is:

@pytest.fixture
def alembic_engine():

"""Override this fixture to provide pytest-alembic powered tests with a database␣
→˓handle.
"""
return sqlalchemy.create_engine("sqlite:///")

If you have a very simple database schema, you may be able to get away with the default fixture implementation,
which uses an in-memory SQLite engine. In most cases however, SQLite will not be able to sufficiently model your
migrations. Typically, DDL is where features of databases tend to differ the most, and so the actual database you,
should likely be what your alembic_engine is.

2.2.3 Pytest Mock Resources

Our recommended approach is to use pytest-mock-resources, another library we have open sourced which uses Docker
to manage the lifecycle of an ephemeral database instance.

This library is what pytest-alembic internally uses, so it’s the strategy we can most easily guarantee should work.

If you use Postgres, MySQL, Redshift, or SQLite (or a database which reacts sufficiently closely)
pytest-mock-resources can support your usecase today. For other alembic-supported databases, file an
issue!

from pytest_mock_resources import create_postgres_fixture

alembic_engine = create_postgres_fixture()

2.2. Setting up Fixtures 7

https://pytest-mock-resources.readthedocs.io/

Pytest Alembic, Release 0.4.0

2.2.4 alembic_engine Invariants

Note: Depending on what you want, and how your code internally produces/consumes engines there is plenty of
flexibility in how pytest-alembic test engines interact with your own.

For example (using pytest-mock-resources), you can ensure that there’s no interdependence between this engine
and the one used by your own tests:

from pytest_mock_resources import create_postgres_fixture

pg = create_postgres_fixture()
alembic_engine = create_postgres_fixture()

def test_foo(pg, alembic_engine): # two unique databases
...

Or if you would prefer them to be the same, you could instead do:

import pytest
from pytest_mock_resources import create_postgres_fixture

pg = create_postgres_fixture()

@pytest.fixture
def alembic_engine(pg):

return pg

def test_foo(pg, alembic_engine):
assert pg is alembic_engine # they're literally the same
...

Of course, you can implement whatever strategy you want. However there are a few invariants that an alembic_engine
fixture should follow, to ensure that tests reliably pass and to avoid inter-test state issues.

1. The engine should point to a database that must be empty. It is out of scope for pytest-alembic to manage the
database state.

2. You should not expect to be able to roll back changes made by these tests. Alembic will internally perform
commits, as do certain pytest-alembic features. Alembic is literally being invoked in the same way you
would normally run migrations, so it’s exactly as permanent.

3. The yielded engine should not be inside a (manually created) transaction. The engine is configured into Alembic
itself, Alembic internals perform commits, and it will almost certainly not work if you try to manage transactional
state around Alembic.

8 Chapter 2. Setup

Pytest Alembic, Release 0.4.0

2.3 Git(hub) Settings

We highly recommend you enable “Require branches to be up to date before merging” on repos which have alembic
migrations!

While this will require that people merging PRs to rebase on top of master before merging (which we think is ideal
for ensuring your build is always green anyways), it guarantees that our tests are running against a known up-to-date
migration history.

Without this option it is trivially easy to end up with an alembic version history with 2 or more heads which needs to
be manually resolved.

Provider support

• Only GitLab EE supports an approximate option to GitHub’s.

• Only Bitbucket EE supports an approximate option to GitHub’s.

2.3. Git(hub) Settings 9

Pytest Alembic, Release 0.4.0

10 Chapter 2. Setup

CHAPTER

THREE

RUNNING TESTS

You have two primary options for running the configured set of tests:

1. Automatically at the command-line via --test-alembic

Pytest Alembic automatically adds a flag, pytest --test-alembic, which will automatically invoke the
baked-in tests.

This can be convenient if you want to exclude migrations tests most of the time, but include them for e.g. CI. By
default, pytest tests would then, not run migrations tests.

Additionally, it means you don’t need to manually include the tests in a test file somewhere in your project.

If your tests dont generally reside at/below a tests/ directory with a tests/conftest.py file, you can/should
set the pytest_alembic_tests_path option, described below.

2. You can directly import the tests you want to include at any point in your project.

Listing 1: tests/test_migrations.py

from pytest_alembic.tests import (
test_model_definitions_match_ddl,
test_single_head_revision,
test_up_down_consistency,
test_upgrade,

)

This can be convenient if you always want the migrations tests to run, or else want a reference to the tests’
existence somewhere in your source code. Pytest would automatically include the tests every time you run i.e.
pytest tests.

In either case, you can exclude migrations tests using pytest’s “marker” system, i.e. pytest -m "not alembic".

3.1 Configuration

3.1.1 Pytest Config

In any of the pytest config locations (pytest.ini, setup.cfg, pyproject.toml), you can set any of the following
configuration options to alter global pytest-alembic behavior.

• pytest_alembic_include

List of built-in tests to include. If specified, ‘pytest_alembic_exclude’ is ignored. If both are omitted, all tests
are included. The tests should be listed as a comma delimited string containing the tests’ names.

11

Pytest Alembic, Release 0.4.0

• pytest_alembic_exclude

List of built-in tests to exclude. Ignored if ‘pytest_alembic_include’ is specified. The tests should be listed as a
comma delimited string containing the tests’ names.

• pytest_alembic_tests_folder

The location under which the built-in tests will be bound. This defaults to ‘tests/’ (the tests themselves then being
executed from tests/pytest_alembic/), the typical test location. However this can be customized if pytest is, for
example, invoked from a parent directory like pytest folder/tests, or the tests are otherwise located at a
different location, relative to the pytest invocation.

Note: As of pytest-alembic version 0.8.5, this option is ignored. Instead, if you require customizing the regis-
tration location, you should use pytest_alembic_tests_path instead.

• pytest_alembic_tests_path

Note: Introduced in v0.10.1.

The location at which the built-in tests will be bound. This defaults to ‘tests/conftest.py’. Typically, you would
want this to coincide with the path at which your alembic_engine is being defined/registered. Note that this path
must be the full path, relative to the root location at which pytest is being invoked.

This option has replaced pytest_alembic_tests_folder due to changes in how pytest test collection needed
to be performed in around pytest ~7.0.

Additionally, this option is only required if you are using the --test-alembic flag.

3.1.2 Alembic Config

See the Config fixture for more detail.

3.2 Alternative to --test-alembic

There is some magic to the automatic inclusion of the built-in tests. It’s not obvious, from looking at any of the test
code, that these tests (sometimes) magically be included.

Also, one may want to include the built-in tests automatically, every time, without needing to specify --test-alembic,
or by doing so conditionally in-code.

Whatever the reason, it is possible to simply import the test implementations from pytest_alembic directly.

Simply import the tests at whatever location you want tests to be included:

Listing 2: tests/test_migrations.py

from pytest_alembic.tests import test_single_head_revision
from pytest_alembic.tests import test_upgrade
from pytest_alembic.tests import test_model_definitions_match_ddl
from pytest_alembic.tests import test_up_down_consistency

Furthermore, doing this as well as using --test-alembic will cause the tests to be run twice (since they’d be consid-
ered unique tests with different paths). So generally, these methods should be considered mutually exclusive.

12 Chapter 3. Running Tests

Pytest Alembic, Release 0.4.0

3.3 Multiple Alembic Histories

It may be the case that you have the histories for two separate databases (or schemas) in a single project. How should
you structure your tests?

This is likely one of the times you want to avoid the use of the --test-alembic flag and the automatic insertion of
tests.

Instead, you’ll likely want to want to make use of create_alembic_fixture().

from pytest_alembic import tests, create_alembic_fixture

The argument here represents the equivalent to `alembic_config`. Depending
on your setup, this may be configuring the "file" argument, "script_location",
or some other way of configuring one or the other of your histories.
history_1 = create_alembic_fixture({"file": "alembic.ini"})

def test_single_head_revision_history_1(history_1):
tests.test_single_head_revision(history_1)

def test_upgrade_history_1(history_1):
tests.test_upgrade(history_1)

def test_model_definitions_match_ddl_history_1(history_1):
tests.test_model_definitions_match_ddl(history_1)

def test_up_down_consistency_history_1(history_1):
tests.test_up_down_consistency(history_1)

The 2nd fixture, and the 2nd set of tests.
history_2 = create_alembic_fixture({"file": "history_2.ini"})

def test_single_head_revision_history_2(history_2):
tests.test_single_head_revision(history_2)

def test_upgrade_history_2(history_2):
tests.test_upgrade(history_2)

def test_model_definitions_match_ddl_history_2(history_2):
tests.test_model_definitions_match_ddl(history_2)

def test_up_down_consistency_history_2(history_2):
tests.test_up_down_consistency(history_2)

Due to limitations of how pytest test collection occurs, there’s currently no obvious way to automatically set up and
define these tests to occur against different fixtures.

3.3. Multiple Alembic Histories 13

Pytest Alembic, Release 0.4.0

3.4 Pytest Marks

Pytest-alembic automatically marks all tests which use the alembic_runner fixture (including all built-in tests) with
the alembic mark.

This means you can optionally include/exclude migrations tests using the vanilla pytest mark machinery like so:

pytest -m 'alembic' # Run *only* alembic tests
pytest -m 'not alembic' # Run everything *except* alembic tests

14 Chapter 3. Running Tests

CHAPTER

FOUR

CUSTOM DATA

To preempt the need to write an explicit test for every new migration, there is a mechanism built into the config to
automatically insert data into the database before or upon reaching a given revision.

To that end:

@pytest.fixture
def alembic_config():

return {
"before_revision_data": {

"fb4d3ab5f38d": [
{"__tablename__": "foo", "id": 1, "name": "foo"},
{"__tablename__": "bar", "id": 1, "name": "bar"},

],
},
"at_revision_data": {

"a5a9ccc4e535": {
"__tablename__": "foo",
"id": 1,
"name": "foo2",

},
},

}

There are two, similiar but distinct options. before_revision_data, and at_revision_data.

• before_revision_data will insert the given data for all upgrade commands before performing the upgrade to
the given revision.

• at_revision_data will insert the given data for all upgrade commands after having performed the upgrade to
the given revision.

To be clear, you can use either of them to describe the same operation. But depending on the circumstance (if for
example, you are testing a real-world situation that you are trying to semantically model more closely), one or the other
option may be more appropriate.

15

Pytest Alembic, Release 0.4.0

4.1 Schema

The value for either before_revision_data or at_revision_data, should be a dict() where the keys are the
revision for which the data is being described.

The value can either be a dict() (single row), or a list() of dict() (multiple rows). __tablename__ is a special
key which tells us the name of the table to insert the data into, and the rest of the spec should describe the columns and
the column data for that row, similar to what you might do for a table.insert().values(...) call.

Alternatively, you can directly import and instantiate a RevisionSpec and set that as the value to either
before_revision_data or at_revision_data.

4.2 Example

Given the above data, and history of:

23256c7bf855 > fb4d3ab5f38d -> a5a9ccc4e535 -> b835ae9ff1d1

We would:

• Upgrade to 23256c7bf855

• Insert {"__tablename__": "foo", "id": 1, "name": "foo"} and {"__tablename__": "bar",
"id": 1, "name": "bar"}

• Upgrade to fb4d3ab5f38d

• Upgrade to a5a9ccc4e535

• Insert {"__tablename__": "foo", "id": 1, "name": "foo2"}

• Upgrade to b835ae9ff1d1

16 Chapter 4. Custom data

https://docs.sqlalchemy.org/en/13/core/dml.html#sqlalchemy.sql.expression.Insert.values

CHAPTER

FIVE

WRITING CUSTOM TESTS

Honestly, there’s not much to it by this point!

from sqlalchemy import text

def test_gnarly_migration_xyz123(alembic_runner, alembic_engine):
Migrate up to, but not including this new migration
alembic_runner.migrate_up_before('xyz123')

Perform some very specific data setup, because this migration is sooooo complex.
...
alembic_runner.insert_into('tablename', dict(id=1, name='foo'))
Or you can optionally accept the `alembic_engine` fixture, which is a
sqlalchemy engine object, with which you can do whatever setup you'd like.

alembic_runner.migrate_up_one()

with alembic_engine.connect() as conn:
rows = conn.execute(text("SELECT id from foo")).fetchall()

assert rows == [(1,)]

alembic_runner has all sorts of convenience methods for altering the state of the database for your test:

class pytest_alembic.runner.MigrationContext(command_executor, revision_data, connection_executor,
history, config)

Within a given environment/execution context, executes alembic commands.

property current: str

Get the list of revision heads.

generate_revision(process_revision_directives=None, prevent_file_generation=True, autogenerate=False,
**kwargs)

Generate a test revision.

If prevent_file_generation is True, the final act of this process raises a RevisionSuccess, which is used as a
sentinal to indicate the revision was generated successfully, while not actually finishing the generation of
the revision file on disk.

property heads: List[str]

Get the list of revision heads.

Result is cached for the lifetime of the MigrationContext.

17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

Pytest Alembic, Release 0.4.0

insert_into(table, data=None, revision=None)
Insert data into a given table.

Parameters

• table (Optional[str]) – The name of the table to insert data into

• data (Union[Dict, List, None]) – The data to insert. This is eventually passed through
to SQLAlchemy’s Table class values method, and so should accept either a list of dict`s
representing a list of rows, or a `dict representing one row.

• revision – The revision of MetaData to use as the table definition for the insert.

managed_downgrade(dest_revision)
Perform an downgrade, one migration at a time.

managed_upgrade(dest_revision)
Perform an upgrade, one migration at a time, inserting static data at the given points.

migrate_down_before(revision)
Migrate down to, but not including the given revision.

migrate_down_one()

Migrate down by exactly one revision.

migrate_down_to(revision)
Migrate down to, and including the given revision.

migrate_up_before(revision)
Migrate up to, but not including the given revision.

migrate_up_one()

Migrate up by exactly one revision.

migrate_up_to(revision)
Migrate up to, and including the given revision.

raw_command(*args, **kwargs)
Execute a raw alembic command.

refresh_history()

Refresh the context’s version of the alembic history.

Note this is not done automatically to avoid the expensive reevaluation step which can make long histories
take seconds longer to evaluate for each test.

Return type
AlembicHistory

roundtrip_next_revision()

Upgrade, downgrade then upgrade.

This is meant to ensure that the given revision is idempotent.

table_at_revision(name, *, revision=None, schema=None)
Return a reference to a sqlalchemy.Table at the given revision.

Parameters

• name – The name of the table to produce a sqlalchemy.Table for.

• revision – The revision of the table to return.

18 Chapter 5. Writing Custom Tests

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

Pytest Alembic, Release 0.4.0

• schema – The schema of the table.

19

Pytest Alembic, Release 0.4.0

20 Chapter 5. Writing Custom Tests

CHAPTER

SIX

EXPERIMENTAL TESTS

Note: Experimental tests may be moved to the default test section at some point. As that time their name would be
changed, and the old name will become deprecated (though for a time, just as a deprecation warning).

6.1 test_all_models_register_on_metadata

Diffs the set of tables registered by alembic’s env.py versus the set of full tables we find throughout your models
package/module.

6.1.1 Enabling all_models_register_on_metadata (TL;DR)

You can either enable this test with no configuration, which will attempt to identify the source module from which the
env.py is loading its MetaData and automatically search in that module/package

Listing 1: pyproject.toml/setup.cfg/pytest.ini

pyproject.toml
[tool.pytest.ini_options]
pytest_alembic_include_experimental = 'all_models_register_on_metadata'

or setup.cfg/pytest.ini
[pytest]
pytest_alembic_include_experimental = all_models_register_on_metadata

Or you can manually import and execute the test somewhere in your own tests. Using this mechanism, you would be
able to circumvent the automatic detection and provide the module/package directly.

from pytest_alembic import tests

def test_all_models_register_on_metadata(alembic_runner):
tests.experimental.test_all_models_register_on_metadata(alembic_runner, 'package.

→˓models')

21

Pytest Alembic, Release 0.4.0

6.1.2 How all_models_register_on_metadata works

The problem this test attempts to solve is best described with an example. Consider the following package structure:

package/
models/

__init__.py
foo.py
bar.py
baz.py

other_packages/
other_modules.py

migrations/
env.py

Next, a typical package containing a MetaData or declarative_base and models or tables. Yours may look super-
ficially different than ours, but you will almost certainly define your base, and either define or import any models or
tables after its definition.

Listing 2: __init__.py

import sqlalchemy
from sqlalchemy import Column, types
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

from package.models import (
foo,
bar,

)

The specifics of the table definitions are not particularly important, so we’ll omit bar.py and baz.py (imagine they’re
essentially identical!), but here’s foo.py.

Listing 3: foo.py

from package.models import Base

class Foo(Base):
__tablename__ = "foo"

id = Column(types.Integer(), autoincrement=True, primary_key=True)

Finally, an excerpt from what is commonly autogenerated by running alembic init.

Listing 4: env.py

...
from package.models import Base
target_metadata = Base.metadata
...
with connectable.connect() as connection:

(continues on next page)

22 Chapter 6. Experimental Tests

Pytest Alembic, Release 0.4.0

(continued from previous page)

context.configure(connection=connection, target_metadata=target_metadata)
...

And now we get to the crux of the problem.

A keen eye may have noticed that baz is not being imported above, and that’s not a mistake! Elsewhere in your code
(other_packages/other_modules, for example) you will likely import all of your models at some point. So when
you go to actually use the models, you may not even notice that there is anything wrong.

However as far as alembic is concerned:

• It will load the env.py

• env.py only imports package.models (which notably omits package.models.baz!)

• Base/Base.metadata will therefore only have foo and bar tables registered on it.

So when you go to run alembic revision --autogenerate, it will be unaware of the “baz” table and either omit
its creation or suggest it be dropped if you had already created it.

This test is meant to be a lint against such scenarios and will fail in any case where there is no direct import of any
tables defined on a MetaData during the course of executing the env.py through alembic.

Note: The original inspiration for this test was actually a refactor which changed some pre-existing imports around.

This lead to an already created table no longer being incidentally imported (somewhere else in the codebase!) during
the normal course of importing our equivalent of package.models.

This immediately resulted in an --autogenerate suggesting that the table be dropped, since it was alembic assumes
you’ve deleted the model entirely!

6.2 test_downgrade_leaves_no_trace

Attempts to ensure that the downgrade for every migration precisely undoes the changes performed in the upgrade.

6.2.1 Enabling downgrade_leaves_no_trace (TL;DR)

Listing 5: pyproject.toml/setup.cfg/pytest.ini

pyproject.toml
[tool.pytest.ini_options]
pytest_alembic_include_experimental = 'downgrade_leaves_no_trace'

or setup.cfg/pytest.ini
[pytest]
pytest_alembic_include_experimental = downgrade_leaves_no_trace

Or you can manually import and execute the test somewhere in your own tests. Using this mechanism, you would be
able to circumvent the automatic detection and provide the module/package directly.

6.2. test_downgrade_leaves_no_trace 23

Pytest Alembic, Release 0.4.0

from pytest_alembic import tests

def test_downgrade_leaves_no_trace(alembic_runner):
tests.experimental.test_downgrade_leaves_no_trace(alembic_runner)

6.2.2 How downgrade_leaves_no_trace works

This test works by attempting to produce two autogenerated migrations.

1. The first is the comparison between the original state of the database before the given migration’s upgrade occurs,
and the MetaData produced by having performed the upgrade.

This should approximate the autogenerated migration that alembic would have generated to produce your up-
graded database state itself.

2. The 2nd is the comparison between the state of the database after having performed the upgrade -> downgrade
cycle for this revision, and the same MetaData used in the first comparison.

This should approximate what alembic would have autogenerated if you actual performed the downgrade on
your database.

In the event these two autogenerations do not match, it implies that your upgrade -> downgrade cycle produces a
database state which is different (enough for alembic to detect) from the state of the database without having performed
the migration at all.

Note: This isn’t perfect! Alembic autogeneration will not detect many kinds of changes! If you encounter some
scenario in which this does not detect a change you’d expect it to, alembic already has extensive ability to customize
and extend the autogeneration capabilities.

24 Chapter 6. Experimental Tests

CHAPTER

SEVEN

ASYNCIO

Support for asyncio is largely built on top of the Alembic Cookbook example, inlined here for posterity:

import asyncio

... no change required to the rest of the code

def do_run_migrations(connection):
context.configure(connection=connection, target_metadata=target_metadata)

with context.begin_transaction():
context.run_migrations()

async def run_migrations_online():
"""Run migrations in 'online' mode.

In this scenario we need to create an Engine
and associate a connection with the context.

"""
connectable = AsyncEngine(

engine_from_config(
config.get_section(config.config_ini_section),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
future=True,

)
)

async with connectable.connect() as connection:
await connection.run_sync(do_run_migrations)

await connectable.dispose()

if context.is_offline_mode():
run_migrations_offline()

else:
asyncio.run(run_migrations_online())

Note that this is a prerequisite for how one gets alembic itself to run with an async connection, when running alembic

25

https://alembic.sqlalchemy.org/en/latest/cookbook.html#using-asyncio-with-alembic

Pytest Alembic, Release 0.4.0

commands interatively yourself.

At this point, you just need to make sure the alembic_engine fixture is producing a async engine. something like

from sqlalchemy import create_engine
from sqlalchemy.ext.asyncio import create_engine_async, AsyncEngine

@pytest.fixture
def alembic_engine(...):

return create_async_engine(URL(...))

@pytest.fixture
def alembic_engine(...):

engine = create_engine(URL(...))
return AsyncEngine(engine)

or, for example, with pytest-mock-resources
from pytest_mock_resources import create_postgres_fixture

alembic_engine = create_postgres_fixture(async_=True)

7.1 A slightly more versatile setup

The above env.py setup comes with a caveat. It assumes execution of the migrations solely through async. Due to the
way sqlalchemy/alembic async works (as evidenced by even their suggested use of run_sync), this can be a problem.

For pytest-alembic the only such built in test is test_downgrade_leaves_no_trace. For compatibility with (majority)
sync alembic use, it’s implemented sychronously, and internally requires performing transaction manipulation which
would otherwise require re-entrant use of asyncio.run.

If you don’t use this test, and haven’t implemented any of your own which encounter this issue, then feel free to stick with
the official alembic suggestion. However a slight reorganization of their suggested setup allows for both sychronous
and asynchronous execution of migrations, and thus fixes test_downgrade_leaves_no_trace.

from sqlalchemy.ext.asyncio.engine import AsyncEngine

def run_migrations_online():
connectable = context.config.attributes.get("connection", None)

if connectable is None:
connectable = AsyncEngine(

engine_from_config(
context.config.get_section(context.config.config_ini_section),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
future=True,

)
)

Note, we decide whether to run asynchronously based on the kind of engine we're␣
→˓dealing with.

(continues on next page)

26 Chapter 7. Asyncio

Pytest Alembic, Release 0.4.0

(continued from previous page)

if isinstance(connectable, AsyncEngine):
asyncio.run(run_async_migrations(connectable))

else:
do_run_migrations(connectable)

Then use their setup for async connection/running of the migration
async def run_async_migrations(connectable):

async with connectable.connect() as connection:
await connection.run_sync(do_run_migrations)

await connectable.dispose()

def do_run_migrations(connection):
context.configure(connection=connection, target_metadata=target_metadata)

with context.begin_transaction():
context.run_migrations()

But the outer layer still allows sychronous execution also.
run_migrations_online()

7.1. A slightly more versatile setup 27

Pytest Alembic, Release 0.4.0

28 Chapter 7. Asyncio

CHAPTER

EIGHT

API

8.1 Fixtures

8.1.1 alembic_runner

pytest_alembic.plugin.fixtures.alembic_runner(alembic_config, alembic_engine)
Produce the primary alembic migration context in which to execute alembic tests.

This fixture allows authoring custom tests which are specific to your particular migration history.

Examples

>>> def test_specific_migration(alembic_runner):
... alembic_runner.migrate_up_to('xxxxxxx')
... assert ...

8.1.2 alembic_config

pytest_alembic.plugin.fixtures.alembic_config()

Override this fixture to configure the exact alembic context setup required.

The return value of this fixture can be one of a few types. :rtype: Union[Dict[str, Any], Config, Config]

• If you’re only configuring alembic-native configuration, a alembic.config.Config object is accepted as
configuration. This largely leaves pytest-alembic out of the setup, so depending on your settings, might be
the way to go.

• If you only have a couple of options to set, you might choose to return a Dict.

The following common alembic config options are accepted as keys.

– file/config_file_name (commonly alembic.ini)

– script_location

– sqlalchemy.url

– target_metadata

– process_revision_directives

– include_schemas

29

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Pytest Alembic, Release 0.4.0

Additionally you can send a file key (akin to alembic -c), should your alembic.ini be otherwise named.

Note that values here, represent net-additive options on top of what you might already have configured in
your env.py. You should generally prefer to configure your env.py however you like it and omit such options
here.

You may also use this dict to set pytest-alembic specific features:

– before_revision_data

– at_revision_data

– minimum_downgrade_revision

• You can also directly return a Config class instance. This is your only option if you want to use both
pytest-alembic specific features and construct your own alembic.config.Config.

Examples

>>> @pytest.fixture
... def alembic_config():
... return {'file': 'migrations.ini'}

>>> @pytest.fixture
... def alembic_config():
... alembic_config = alembic.config.Config()
... alembic_config.set_main_option("script_location", ...)
... return alembic_config

Config

class pytest_alembic.config.Config(config_options=<factory>, alembic_config=None,
before_revision_data=None, at_revision_data=None,
minimum_downgrade_revision=None, skip_revisions=None)

Pytest-alembic configuration options.

• config_options: Meant to simplify the creation of alembic.config.Config
objects. Supply keys common to customization in alembic configuration. For example:

– file/config_file_name (commonly alembic.ini)

– script_location

– sqlalchemy.url

– target_metadata

– process_revision_directives

– include_schemas

• Both before_revision_data and at_revision_data are described in detail in Custom data.

• minimum_downgrade_revision can be used to set a lower bound on the downgrade migrations which
are run built-in tests like test_up_down_consistency and test_downgrade_leaves_no_trace.

• skip_revisions can be used to avoid executing specific revisions, particularly if they are slow and you
can guarantee to yourself that the difference in the resulting migrations history wont have a meaningful

30 Chapter 8. API

Pytest Alembic, Release 0.4.0

effect. Note that skipping migrations can be “dangerous”, because either DDL or data differences could
lead to migrations which pass in tests, but fail in practice.

For example:

>>> import pytest

>>> @pytest.fixture
... def alembic_config():
... return Config(minimum_downgrade_revision='abcde12345')

This would essentially short-circuit and avoid running the downgrade migrations including and below this
migration.

Note: If a downgrade raises a NotImplementedError, it will have the same effect as a
minimum_downgrade_revision, but will emit a warning suggesting the use of this feature instead.

classmethod from_raw_config(raw_config=None)
Adapt between pre-produced alembic config and raw config options.

Allows one to specify raw pytest-alembic config options through raw dictionary, as well as being flexible
enough to allow a literal alembic Config object.

Examples

>>> Config.from_raw_config()
Config(config_options={}, alembic_config=None, before_revision_data=None, at_
→˓revision_data=None, minimum_downgrade_revision=None, skip_revisions=None)

>>> Config.from_raw_config({'minimum_downgrade_revision': 'abc123'})
Config(config_options={}, alembic_config=None, before_revision_data=None, at_
→˓revision_data=None, minimum_downgrade_revision='abc123', skip_revisions=None)

>>> Config.from_raw_config(Config(minimum_downgrade_revision='abc123'))
Config(config_options={}, alembic_config=None, before_revision_data=None, at_
→˓revision_data=None, minimum_downgrade_revision='abc123', skip_revisions=None)

8.1.3 alembic_engine

pytest_alembic.plugin.fixtures.alembic_engine()

Override this fixture to provide pytest-alembic powered tests with a database handle.

8.1. Fixtures 31

Pytest Alembic, Release 0.4.0

8.1.4 create_alembic_fixture

pytest_alembic.plugin.fixtures.create_alembic_fixture(raw_config=None)
Create a new fixture alembic_runner-like fixture.

In many cases, this function should not be strictly necessary. You can generally rely solely on the
--test-alembic flag, automatic insertion of tests, and the alembic_runner() fixture.

However this may be useful in some situations:

• If you would generally prefer to avoid the --test-alembic flag and automatic test insertion, this is the
function for you!

• If you have multiple alembic histories and therefore require more than one fixture, you will minimally need
to use this for the 2nd history (if not both)

Examples

>>> from pytest_alembic import tests
>>>
>>> alembic = create_alembic_fixture()
>>>
>>> def test_upgrade_head(alembic):
... tests.test_upgrade_head(alembic)
>>>
>>> def test_specific_migration(alembic):
... alembic_runner.migrate_up_to('xxxxxxx')
... assert ...

Config can also be supplied similarly to the alembic_config() fixture.

>>> alembic = create_alembic_fixture({'file': 'migrations.ini'})

8.2 Alembic Runner

The object yielded into a test from an alembic_runner fixture is the MigrationContext

class pytest_alembic.runner.MigrationContext(command_executor, revision_data, connection_executor,
history, config)

Within a given environment/execution context, executes alembic commands.

property current: str

Get the list of revision heads.

generate_revision(process_revision_directives=None, prevent_file_generation=True, autogenerate=False,
**kwargs)

Generate a test revision.

If prevent_file_generation is True, the final act of this process raises a RevisionSuccess, which is used as a
sentinal to indicate the revision was generated successfully, while not actually finishing the generation of
the revision file on disk.

32 Chapter 8. API

https://docs.python.org/3/library/stdtypes.html#str

Pytest Alembic, Release 0.4.0

property heads: List[str]

Get the list of revision heads.

Result is cached for the lifetime of the MigrationContext.

insert_into(table, data=None, revision=None)
Insert data into a given table.

Parameters

• table (Optional[str]) – The name of the table to insert data into

• data (Union[Dict, List, None]) – The data to insert. This is eventually passed through
to SQLAlchemy’s Table class values method, and so should accept either a list of dict`s
representing a list of rows, or a `dict representing one row.

• revision – The revision of MetaData to use as the table definition for the insert.

managed_downgrade(dest_revision)
Perform an downgrade, one migration at a time.

managed_upgrade(dest_revision)
Perform an upgrade, one migration at a time, inserting static data at the given points.

migrate_down_before(revision)
Migrate down to, but not including the given revision.

migrate_down_one()

Migrate down by exactly one revision.

migrate_down_to(revision)
Migrate down to, and including the given revision.

migrate_up_before(revision)
Migrate up to, but not including the given revision.

migrate_up_one()

Migrate up by exactly one revision.

migrate_up_to(revision)
Migrate up to, and including the given revision.

raw_command(*args, **kwargs)
Execute a raw alembic command.

refresh_history()

Refresh the context’s version of the alembic history.

Note this is not done automatically to avoid the expensive reevaluation step which can make long histories
take seconds longer to evaluate for each test.

Return type
AlembicHistory

roundtrip_next_revision()

Upgrade, downgrade then upgrade.

This is meant to ensure that the given revision is idempotent.

8.2. Alembic Runner 33

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

Pytest Alembic, Release 0.4.0

table_at_revision(name, *, revision=None, schema=None)
Return a reference to a sqlalchemy.Table at the given revision.

Parameters

• name – The name of the table to produce a sqlalchemy.Table for.

• revision – The revision of the table to return.

• schema – The schema of the table.

class pytest_alembic.history.AlembicHistory(map, revisions, revision_indices, revisions_by_index)

classmethod parse(revision_map)
Extract the set of migration revision hashes from alembic’s notion of the history.

Return type
AlembicHistory

class pytest_alembic.revision_data.RevisionData(before_revision_data, at_revision_data)
Describe the data which should exist at given revisions when performing upgrades.

classmethod from_config(config)
Produce a RevisionData from raw configuration from alembic_config().

get_at(revision)
Yield the individual data insertions which should occur upon reaching the given revision.

Return type
Union[Dict, List[Dict]]

get_before(revision)
Yield the individual data insertions which should occur before the given revision.

Return type
Union[Dict, List[Dict]]

class pytest_alembic.revision_data.RevisionSpec(data)
Describe a set of valid database data at a set of revisions.

get(revision)
Get the database data described at a particular revision.

Return type
Union[Dict, List[Dict]]

classmethod parse(data)
Parse a raw dict structure into a RevisionSpec.

34 Chapter 8. API

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict

CHAPTER

NINE

CONTRIBUTING

9.1 Prerequisites

If you are not already familiar with Poetry, this is a poetry project, so you’ll need this!

9.2 Getting Setup

Note, while the project itself provisionally runs on python 3.6, test dependencies including pytest-mock-resources,
coverage, and black, have minimum python versions of 3.7. So local development of pytest-alembic itself requires.
Additionally this means we dont test 3.6 support, so supporting it is best effort until it becomes inconvenient.

See the Makefile for common commands, but for some basic setup:

Installs the package with all the extras
make install

And you’ll want to make sure you can run the tests and linters successfully:

Runs CI-level tests, with coverage reports
make test lint

9.3 Need help

Submit an issue!

35

https://poetry.eustace.io/

Pytest Alembic, Release 0.4.0

36 Chapter 9. Contributing

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

37

Pytest Alembic, Release 0.4.0

38 Chapter 10. Indices and tables

PYTHON MODULE INDEX

p
pytest_alembic.history, 34
pytest_alembic.revision_data, 34
pytest_alembic.runner, 32

39

Pytest Alembic, Release 0.4.0

40 Python Module Index

INDEX

A
alembic_config() (in module

pytest_alembic.plugin.fixtures), 29
alembic_engine() (in module

pytest_alembic.plugin.fixtures), 31
alembic_runner() (in module

pytest_alembic.plugin.fixtures), 29
AlembicHistory (class in pytest_alembic.history), 34

C
Config (class in pytest_alembic.config), 30
create_alembic_fixture() (in module

pytest_alembic.plugin.fixtures), 32
current (pytest_alembic.runner.MigrationContext prop-

erty), 32

F
from_config() (pytest_alembic.revision_data.RevisionData

class method), 34
from_raw_config() (pytest_alembic.config.Config

class method), 31

G
generate_revision()

(pytest_alembic.runner.MigrationContext
method), 32

get() (pytest_alembic.revision_data.RevisionSpec
method), 34

get_at() (pytest_alembic.revision_data.RevisionData
method), 34

get_before() (pytest_alembic.revision_data.RevisionData
method), 34

H
heads (pytest_alembic.runner.MigrationContext prop-

erty), 32

I
insert_into() (pytest_alembic.runner.MigrationContext

method), 33

M
managed_downgrade()

(pytest_alembic.runner.MigrationContext
method), 33

managed_upgrade() (pytest_alembic.runner.MigrationContext
method), 33

migrate_down_before()
(pytest_alembic.runner.MigrationContext
method), 33

migrate_down_one() (pytest_alembic.runner.MigrationContext
method), 33

migrate_down_to() (pytest_alembic.runner.MigrationContext
method), 33

migrate_up_before()
(pytest_alembic.runner.MigrationContext
method), 33

migrate_up_one() (pytest_alembic.runner.MigrationContext
method), 33

migrate_up_to() (pytest_alembic.runner.MigrationContext
method), 33

MigrationContext (class in pytest_alembic.runner), 32
module

pytest_alembic.history, 34
pytest_alembic.revision_data, 34
pytest_alembic.runner, 32

P
parse() (pytest_alembic.history.AlembicHistory class

method), 34
parse() (pytest_alembic.revision_data.RevisionSpec

class method), 34
pytest_alembic.history

module, 34
pytest_alembic.revision_data

module, 34
pytest_alembic.runner

module, 32

R
raw_command() (pytest_alembic.runner.MigrationContext

method), 33

41

Pytest Alembic, Release 0.4.0

refresh_history() (pytest_alembic.runner.MigrationContext
method), 33

RevisionData (class in pytest_alembic.revision_data),
34

RevisionSpec (class in pytest_alembic.revision_data),
34

roundtrip_next_revision()
(pytest_alembic.runner.MigrationContext
method), 33

T
table_at_revision()

(pytest_alembic.runner.MigrationContext
method), 33

42 Index

	Quickstart
	Introduction
	The pitch
	Built-in Tests
	Custom Tests

	Installing

	Setup
	env.py
	Caplog Issues
	Optional but helpful additions

	Setting up Fixtures
	Setting up alembic_config
	Setting up alembic_engine
	Pytest Mock Resources
	alembic_engine Invariants

	Git(hub) Settings

	Running Tests
	Configuration
	Pytest Config
	Alembic Config

	Alternative to --test-alembic
	Multiple Alembic Histories
	Pytest Marks

	Custom data
	Schema
	Example

	Writing Custom Tests
	Experimental Tests
	test_all_models_register_on_metadata
	Enabling all_models_register_on_metadata (TL;DR)
	How all_models_register_on_metadata works

	test_downgrade_leaves_no_trace
	Enabling downgrade_leaves_no_trace (TL;DR)
	How downgrade_leaves_no_trace works

	Asyncio
	A slightly more versatile setup

	API
	Fixtures
	alembic_runner
	alembic_config
	Config

	alembic_engine
	create_alembic_fixture

	Alembic Runner

	Contributing
	Prerequisites
	Getting Setup
	Need help

	Indices and tables
	Python Module Index
	Index

